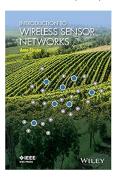
Resilient Monotone Sequential Maximization

Vasileios Tzoumas
Post-doctoral associate
Massachusetts Institute of Technology
with
Ali Jadbabaie, George J. Pappas

Scheduling sensors for optimal Kalman filtering

Goal: Minimize minimum mean square error $\sum_{t=1}^{T} \operatorname{trace}(\Sigma_t)$ by selecting different sensors to operate at each $t = 1, \ldots, T$.



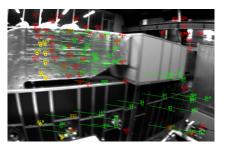
Complication: Bandwidth/battery considerations.

Problem: Schedule few sensors to activate at each step to achieve goal.

¹[Gupta et al, Automatica'06]; [Vitus et al., Automatica'12].

Task-driven sensor scheduling for autonomous navigation

Goal: Minimize LQG cost by using different deployed sensors in the environment, as well as visual features, at each t = 1, ..., T.



Carlone and Karaman, IEEE TRO '18

Complication: Power/computation limitations.

Situation: Not all sensing data are relevant to the task.

Problem: At each step activate only informative sensors towards goal.¹

¹[T, Carlone, Pappas, Jadbabaie, ACC'18]; [Pacelli, Majumdar, arxiv'18].

Scheduling motion plan for active information gathering

Goal: Maximize information about a process of interest by deploying team of mobile robots across a period of time.

Yang et al., Science Robotics '18

Situation: Each robot has discretized motion space.

Problem: Schedule robots' joint motion plan to achieve goal.¹

¹[Tokekar, IROS'14; Atanasov, ICRA'14; Corah, Michael, Aut. Robots '18].

All previous are monotone sequential maximization problems

Monotone sequential maximization:

Given:

- ▶ time horizon T;
- \blacktriangleright available sensors \mathcal{V}_t at each time $t=1,\ldots,T$;
- estimation objective f;
- sensing budgets α_t ,

solve:

$$\max_{\mathcal{A}_1 \subseteq \mathcal{V}_1, |\mathcal{A}_1| \le \alpha_1} \cdots \max_{\mathcal{A}_T \subseteq \mathcal{V}_T, |\mathcal{A}_T| \le \alpha_T} f(\mathcal{A}_1, \dots, \mathcal{A}_T).$$

¹Additional contributions in control and sensing by: Bushnell; Clark; Cortes; Jovanovic; Krause; Le Ny; Mo; Motee; Olshevsky; Pasqualetti; Pequito; Poovendran; Roy; Sinopoli; Siami; Smith; Summers; Sundaram; Tomlin; Zampieri; ...

Sensors fail; features get occluded; robots get attacked¹

Denial of Service in Sensor Networks

Unless their developers take security into account at design time, sensor networks and the protocols they depend on will remain vulnerable to denial-of-service attacks.

ensor networks hold the promise of facilitating large-scale, real-time data processing in complex environments. Their foreseeable applications will help protect and monitor military, environmental, safety-critical, or domestic infrastructures and resources. must form ad hoc relationships in a dense network with little or no preexisting infrastructure.

Protocols and algorithms operating in the network must support large-scale distribution, often with only localized interactions among nodes. The network must continue operating even after significant node

Wood and Stankovic, Computer '02

if we pick \mathcal{A}_t to $\max_{|\mathcal{A}_t| \leq \alpha_t} f(\mathcal{A}_{1:T})$ and then a $\mathcal{B}_t \subseteq \mathcal{A}_t$ we end up with $f(\mathcal{A}_{1:T} - \mathcal{B}_{1:T})$

¹[Sless et al., AAMAS'14], [González-Banos et al., ICRA'02], [Roumeliotis et al., IROS'98].

Sensors fail; features get occluded; robots get attacked¹

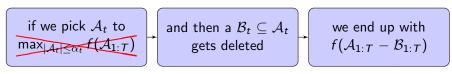
Denial of Service in Sensor Networks

Unless their developers take security into account at design time, sensor networks and the protocols they depend on will remain vulnerable to denial-of-service attacks.

ensor networks hold the promise of facilitating large-scale, real-time data processing in complex environments. Their foreseeable applications will help protect and monitor military, environmental, safety-critical, or domestic infrastructures and resources. must form ad hoc relationships in a dense network with little or no preexisting infrastructure.

Protocols and algorithms operating in the network must support large-scale distribution, often with only localized interactions among nodes. The network must continue operating even after significant node

Wood and Stankovic, Computer '02



¹[Sless et al., AAMAS'14], [González-Banos et al., ICRA'02], [Roumeliotis et al., IROS'98].

Resilient monotone sequential maximization

Problem

Given:

- time horizon T;
- ightharpoonup available sensors V_t at t = 1, ..., T;
- e.g., Kalman filtering accuracy $\sum_{t=1}^{T} \operatorname{trace}(\Sigma_t)$ • estimation objective f s.t. non-decreasing, $f \geq 0$, and $f(\emptyset) = 0$;
- ▶ budgets α_t and β_t s.t. $0 \le \beta_t \le \alpha_t \le |\mathcal{V}_t|$, for all t = 1, 2, ..., T,

solve:

$$\max_{\mathcal{A}_1 \subseteq \mathcal{V}_1} \min_{\mathcal{B}_1 \subseteq \mathcal{A}_1} \cdots \max_{\mathcal{A}_T \subseteq \mathcal{V}_T} \min_{\mathcal{B}_T \subseteq \mathcal{A}_T} f(\mathcal{A}_1 - \mathcal{B}_1, \dots, \mathcal{A}_T - \mathcal{B}_T),$$

$$such \ that:$$

$$|\mathcal{A}_t| < \alpha_t \ and \ |\mathcal{B}_t| < \beta_t, \ for \ all \ t = 1, \dots, T.$$

Symbol explanation:

- $ightharpoonup A_t$: selected sensors at time t;
- \triangleright \mathcal{B}_t : failed sensors in \mathcal{A}_t .

Difficulty of problem

- ▶ Problem is at least NP-hard [Orlin et al., '16]; e.g., inapproximable for Kalman filtering [Ye et al., ACC'18].
- ▶ No known poly-time algorithm:
 - E.g., greedy can perform arbitrarily bad [Orlin et al., '16], since it is oblivious to failures:

```
Greedy [Fisher et al., 1978]

1: \mathcal{A}_t \leftarrow \emptyset for all t = 1, \ldots, T;

2: \mathcal{A}_{1:T} \leftarrow \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_T;

3: while |\mathcal{A}_t| \leq \alpha_1 or \ldots or |\mathcal{A}_T| \leq \alpha_T do

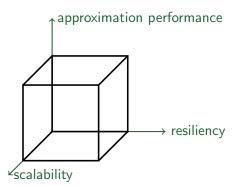
4: x \in \arg\max_{y \in \mathcal{V} \setminus \mathcal{A}_{1:T}} f(\mathcal{A}_{1:T} \cup \{y\});

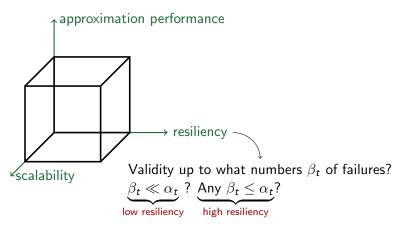
5: \mathcal{A}_{1:T} \leftarrow \mathcal{A}_{1:T} \cup \{x\};

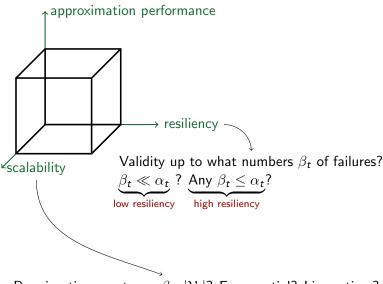
6: end while

Output: Sets \mathcal{A}_1, \ldots, \mathcal{A}_T.
```

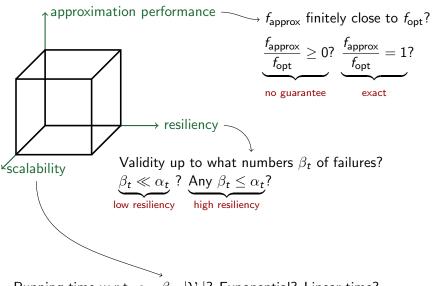
- ▶ f in control and sensing is usually non-submodular:
 - Min. mean square error of Kalman filter [Ye, Roy, Sundaram, ACC'18]
 - trace of inverse of controllability Gramian [Olshevsky, TCNS '17];
 - LQG cost [Summers, CDC '17; Tzoumas et al, arxiv '18];







Running time w.r.t. α_t , β_t , $|\mathcal{V}_t|$? Exponential? Linear time?



Running time w.r.t. α_t , β_t , $|\mathcal{V}_t|$? Exponential? Linear time?

Literature review

Earlier work considers **non-sequential** variant (for **placement** instead of scheduling):

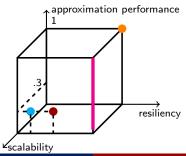
$$\max_{\mathcal{A}\subseteq\mathcal{V}, |\mathcal{A}|\leq\alpha} \min_{\mathcal{B}\subseteq\mathcal{A}, |\mathcal{B}|\leq\beta} f(\mathcal{A}-\mathcal{B}).$$

Literature review

Earlier work considers **non-sequential** variant (for **placement** instead of scheduling):

$$\max_{\mathcal{A}\subseteq\mathcal{V}, |\mathcal{A}|\leq\alpha} \min_{\mathcal{B}\subseteq\mathcal{A}, |\mathcal{B}|\leq\beta} f(\mathcal{A}-\mathcal{B}).$$

- ▶ For f monotone and submodular, algorithms by:
 - Krause et al., JMLR '08: Exponential time $O(\alpha^{\beta})$.
 - Orlin et al., '16, Cevher et al., ICML '18: Low resiliency $\beta \leq \sqrt{\alpha}$, $\alpha/\log \alpha$.
 - Tzoumas et al., IEEE CDC '17: Guarantee for f with bounded curvature.

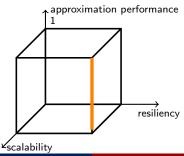


Literature review

Earlier work considers **non-sequential** variant (for **placement** instead of scheduling):

$$\max_{\mathcal{A}\subseteq\mathcal{V}, |\mathcal{A}|\leq\alpha} \min_{\mathcal{B}\subseteq\mathcal{A}, |\mathcal{B}|\leq\beta} f(\mathcal{A}-\mathcal{B}).$$

- ► For monotone functions with bounded curvature, using algorithm by Tzoumas et al. CDC '17:
 - Cevher et al., NeurIPS '18: Cardinality Constraint.
 - Tzoumas et al., arxiv '18: Any matroid constraint.



Our claim of innovation

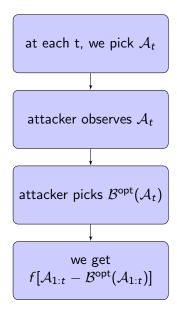
First algorithm for Problem s.t.:

- ▶ *Adaptive*: A_t is adapted to history of attacks B_1, \ldots, B_{t-1} ;
- ► Scalable: $O[(\alpha_t \beta_t)|\mathcal{V}|]$ running time per step t = 1, ..., T;
- Resilient: valid for any number of failures $\beta_{1:T}$;
- ► Non-zero approximation performance: guaranteed performance for any monotone function with bounded curvature.

Algorithm

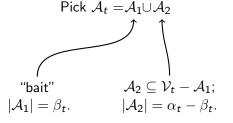
Notation:

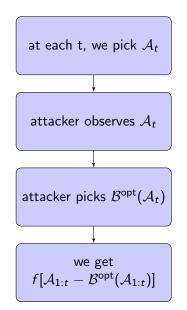
 $\blacktriangleright \ \mathcal{A}_{1:t} = \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_t.$



Algorithm

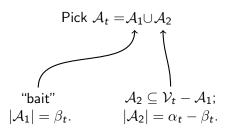
Idea: Given $\mathcal{B}_{1:t-1}$ do:





Algorithm¹ -

Idea: Given $\mathcal{B}_{1:t-1}$ do:



Order
$$V_t = \{z_1, \dots, z_{|\mathcal{V}|}\}$$
 s.t.:
 $f(z_1) \geq \dots \geq f(z_{|\mathcal{V}_t|})$

Pick bait $\mathcal{A}_1 = \{z_1, \ldots, z_{eta_t}\}$

Pick A_2 greedily from $V_t - A_1$ to maximize $f(A_{1:t-1} - B_{1:t-1}, A_2)$

Return $\mathcal{A}_t = \mathcal{A}_1 \cup \mathcal{A}_2$

¹Making adaptive the algorithm in [T, Gatsis, Jadbabaie, Pappas, CDC '17].

Total curvature of monotone f

Definition [Sviridenko et al., arxiv'13]:1

For **monotone** f, then f's total curvature is defined as:

$$c_f \triangleq 1 - \min_{v \in \mathcal{V}} \min_{\mathcal{A}, \mathcal{B} \subseteq \mathcal{V} \setminus \{v\}} \frac{f(\{v\} \cup \mathcal{A}) - f(\mathcal{A})}{f(\{v\} \cup \mathcal{B}) - f(\mathcal{B})}.$$

Interpretation:

- \triangleright c_f measures how \mathcal{V} 's elements substitute each other;
- ▶ if f submodular $\Rightarrow c_f = \kappa_f$ [Conforti, Cornuéjols, Disc. Math.'84]:

$$\kappa_f \triangleq 1 - \min_{v \in \mathcal{V}} \frac{f(\mathcal{V}) - f(\mathcal{V} \setminus \{v\})}{f(\{v\})}.$$

¹Other definitions: [Das, Kempe, ICML'11]; [Iyer et al., NeurIPS'13]; [Wang et al., Comb. Opt.'14].

Total curvature of monotone f

Definition [Sviridenko et al., arxiv'13]:

For **monotone** f, then f's total curvature is defined as:

$$c_f \triangleq 1 - \min_{v \in \mathcal{V}} \min_{\mathcal{A}, \mathcal{B} \subseteq \mathcal{V} \setminus \{v\}} \frac{f(\{v\} \cup \mathcal{A}) - f(\mathcal{A})}{f(\{v\} \cup \mathcal{B}) - f(\mathcal{B})}.$$

Properties:

- ► $c_f < 1$:
- ▶ NP-hard to compute ⇒ approximated with upper bounds:
 - Restricted concave-smooth functions [Dimakis et al., Annals of Stat. '18];
 - Concave over modular functions [Iyer et al, NeurIPS '13];
 - Min. mean square error [Chamon, Ribeiro, GSIP '16, CDC '17];
 - LQG cost for task-driven sensing [T, Carlone, Pappas, Jadbabaie, '18];
 - LQG cost for actuation [Summers, Kamgarpour, CDC '18].

Algorithm's performance

$\mathsf{Theorem}$

Algorithm:

- (Resiliency) is valid for any $0 \le \beta_t \le \alpha_t \le |\mathcal{V}_t|$;
- (Scalability) runs in $(\alpha_t \beta_t)|\mathcal{V}|$ time;
- ► (Approximation performance) guarantees for f monotone:

$$\frac{f_{approx}}{f_{opt}} \ge (1 - c_f)^4.$$

Algorithm's performance

$\mathsf{Theorem}$

Algorithm:

- (Resiliency) is valid for any $0 \le \beta_t \le \alpha_t \le |\mathcal{V}_t|$;
- (Scalability) runs in $(\alpha_t \beta_t)|\mathcal{V}|$ time;
- ► (Approximation performance) guarantees for f monotone:

$$\frac{f_{approx}}{f_{opt}} \ge (1 - c_f)^4.$$

Tightness of bound:

- ► For $\max_{|A| \le \alpha} f(A)$ best possible bound is $(1 c_f)$ [Sviridenko et al,'13];
- ► For $\max_{|\mathcal{A}| < \alpha} \min_{\mathcal{B} \subset \mathcal{A}, |\mathcal{B}| < \beta} f(\mathcal{A} \mathcal{B})$ best known bound is $(1 c_f)^2$;

¹Achieved modifying proof in [Tzoumas et al., arxiv'18].

Functions with $c_f < 1$, and applications

Functions:

- Restricted concave-smooth functions [Dimakis et al., Ann. Stat. '18];
- Concave over modular functions [Iyer et al, NeurIPS '13];
- Min. mean square error [Chamon, Ribeiro, GSIP '16, CDC '17];
- ▶ LQG cost for task-driven sensing [T, Carlone, Pappas, Jadbabaie, '18];
- ▶ LQG cost for actuation [Summers, Kamgarpour, CDC '18].

Applications (see also ref. above):

- ► Statistical learning:
 - Experiment design;
 - Data selection;
 - Dictionary selection.

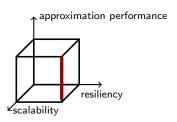
- ► Control and sensing:
 - Task-driven sensor and actuator scheduling;
 - Active information gathering.

- ► Operations research:
 - Optimal budget allocation [Bian et al., ICML'17;
 Ahmed, Atamturk, Math. Prog. '11].

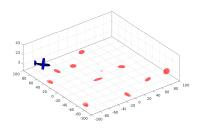
Summary of results

First algorithm for Problem s.t.:

- ▶ *Adaptive*: A_t is adapted to history of attacks B_1, \ldots, B_{t-1} ;
- ▶ *Scalable*: $O[(\alpha_t \beta_t)|\mathcal{V}_t|]$ running time per step t = 1, ..., T;
- Resilient: valid for any number of failures $\beta_{1:T}$;
- Non-zero approximation performance: guaranteed performance for any monotone function with bounded curvature.



Simulations: LQG control and sensing¹



Scenario: UAV moves in a 3D space.

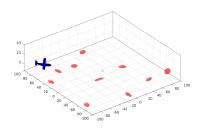
UAV's model: double-integrator, with state $x_k = [p_k, v_k]^{\top}$ where:

- $ightharpoonup p_k = position;$
- $ightharpoonup v_k = \text{velocity}.$

Objective: Land UAV at position [0, 0, 0] with 0 velocity.

¹[T, Carlone, Pappas, Jadbabaie, ACC'18; arxiv'18].

Simulations: LQG control and sensing¹



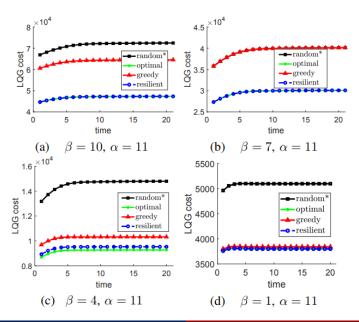
Available sensors and landmarks for localization:

- ▶ 1 GPS (measuring position);
- ▶ 1 altimeter;
- 1 stereo camera;
- ▶ 10 sensors on the ground;

Sensor selection metric: LQG cost.

¹[T, Carlone, Pappas, Jadbabaie, ACC'18; arxiv'18].

Simulation results



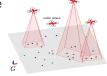
Summary, and extensions

First algorithm for Problem s.t.:

- ▶ *Adaptive*: A_t is adapted to history of attacks B_1, \ldots, B_{t-1} ;
- ▶ *Scalable*: $O[(\alpha_t \beta_t)|\mathcal{V}_t|]$ running time per step t = 1, ..., T;
- Resilient: valid for any number of failures $\beta_{1:T}$;
- ► Non-zero approximation performance: guaranteed performance for any monotone function with bounded curvature.

Where do we go from here:

- **Beyond curvature**: c_f can be provably < 1; is this enough?
- Resilient active target coverage: Active target coverage asks to $\max \sum f_t$ where f_t unknown a priori; f_t is the number of targets covered at time t.
 - Contrast that to $\sum tr(\Sigma_t)$ for Kalman filt., where $\sum tr(\Sigma_t)$ is computable given a sensor selection.



¹[Zhou, Tzoumas, Pappas, Tokekar, IEEE RAL'19].